Sekarang Jam ...

WELCOME

Hidup adalah Sebuah Pilihan...

Terbang atau Terinjak...

Minggu, 02 Januari 2011

REAKSI FOTOSINTESIS    

         Seorang fisiologis berkebangsaan Inggris, F. F. Blackman, mengadakan percobaan dengan melakukan penyinaran secara terus-menerus pada tumbuhan Elodea. Ternyata, ada saat dimana laju fotosintesis tidak meningkat sejalan dengan meningkatnya penyinaran. Akhirnya, Blackman menarik kesimpulan bahwa paling tidak ada dua proses berlainan yang terlibat, ada reaksi yang memerlukan cahaya dan tidak memerlukan cahaya.
        Teori ini diperkuat dengan mengulangi percobaan pada temperatur yang agak lebih tinggi. Seperti diketahui, kebanyakan reaksi kimia berjalan lebih cepat pada suhu lebih tinggi (sampai suhu tertentu). Pada suhu 35°C, laju fotosintesis tidak menurun sampai ada intensitas cahaya yang lebih tinggi. Hal ini menunjukkan bahwa reaksi gelap kini berjalan lebih cepat. Faktor bahwa pada intensitas cahaya yang rendah laju fotosintesis itu tidak lebih besar pada 35°C dibandingkan pada 20°C juga menunjang gagasan bahwa yang menjadi pembatas pada proses ini adalah reaksi terang. Reaksi terang ini tidak tergantung pada suhu, tetapi hanya tergantung pada intensitas penyinaran. Laju fotosintesis yang meningkat dengan naiknya suhu tidak terjadi jika suplai CO2 terbatas. Jadi, konsentrasi CO2 harus ditambahkan sebagai faktor ketiga yang mengatur laju fotosintesis itu berlangsung.
         Jadi, secara umum fotosintesis terbagi menjadi dua tahap reaksi:
1.Reaksi Terang, yang membutuhkan cahaya
2.Reaksi Gelap, yang tidak membutuhkan cahaya

REAKSI TERANG
* Tahap pertama dari system fotosintesis adalah reaksi terang
* Reaksi ini memerlukan molekul air
* Reaksi ini sangat bergantung kepada ketersediaan sinar matahari.
* Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.
* Sinar matahari yang berupa foton yang terbaik adalah sinar merah dan ungu
* Pigmen klorofil menyerap lebih banyak cahaya terlihat pada warna ungu (400-450 nanometer) dan merah (650-700 nanometer) dibandingkan hijau (500-600
nanometer). Cahaya hijau ini akan dipantulkan dan ditangkap oleh mata kita
sehingga menimbulkan sensasi bahwa daun berwarna hijau.
* Fotosintesis akan menghasilkan lebih banyak energi pada gelombang cahaya dengan panjang tertentu. Hal ini karena panjang gelombang yang pendek menyimpan lebih banyak energi.
* Di dalam daun, cahaya akan diserap oleh molekul klorofil untuk dikumpulkan pada pusat-pusat reaksi
* Reaksi ini melibatkan beberapa kompleks protein dari membran tilakoid berupa pigmen yang terdiri dari sistem cahaya yang disebut fotosistem
* Dua jenis pigmen yang berfungsi aktif sebagai pusat reaksi atau fotosistem yaitu fotosistem II dan fotosistem I.
* Fotosistem I dan II sebagai sistem pembawa elektron
* Fotosistem terdapat perangkat komplek protein pembentuk ATP berupa enzim ATP sintase.
* Fotosistem II terdiri dari molekul klorofil yang menyerap cahaya dengan panjang
gelombang 680 nanometer,
* sedangkan fotosistem I 700 nanometer.
* Kedua fotosistemini akan bekerja secara simultan dalam fotosintesis, seperti dua baterai dalam senter yang bekerja saling memperkuat.
* Fotosintesis dimulai ketika cahaya mengionisasi molekul klorofil pada fotosistem II(P.680)
* Fotosistem II melepaskan elektron yang akan ditransfer sepanjang rantai transpor
elektron.
* Energi dari elektron ini digunakan untuk fotofosforilasi yang menghasilkan ATP , satuan pertukaran energi dalam sel.
* Reaksi ini menyebabkan fotosistem II mengalami defisit atau kekurangan elektron yang harus segera diganti.
* Pada tumbuhan dan alga, kekurangan elektron ini dipenuhi oleh elektron dari hasil ionisasi air yang terjadi bersamaan dengan ionisasi klorofil.
* Hasil ionisasi air ini adalah elektron dan oksigen.
* Oksigen dari proses fotosintesis hanya dihasilkan dari air, bukan dari karbon dioksida
* Pada saat yang sama dengan ionisasi fotosistem II, cahaya juga mengionisasi fotosistem I, melepaskan elektron yang ditransfer sepanjang rantai transpor elektron yang akhirnya mereduksi NADP menjadi NADPH
* Jadi P 700 ( Photosistem I ) menhasilkan NADPH2 , sedang Phoyosistem II (P 680) menghasilkan Oksigen dan ATP
* Reaksi terang mengubah energi cahaya menjadi energi kimia, juga menghasilkan oksigen dan mengubah ADP dan NADP+ menjadi energi pembawa ATP dan NADPH2.
* ATP dan NADPH2 inilah yang nanti akan digunakan sebagaienergi dalam reaksi gelap
* Reaksi terang terjadi di tilakoid, yaitu struktur cakram yang terbentuk dari pelipatan membran dalam kloroplas.
* Membran tilakoid menangkap energi cahaya dan mengubahnya menjadi energi kimia. Jika ada bertumpuk-tumpuk tilakoid, maka disebut grana

Fotofosforilasi Siklik
          Reaksi fotofosforilasi siklik adalah reaksi yang hanya melibatkan satu fotosistem, yaitu fotosistem I. Dalam fotofosforilasi siklik, pergerakan elektron dimulai dari fotosistem I dan berakhir di fotosistem I.
* Pertama, energi cahaya, yang dihasilkan oleh matahari, membuat elektron-elektron di P700 menjadi aktif karena rangsangan dari luar
* elektron yang terbentuk itu kemudian keluar menuju akseptor elektron primer kemudian menuju rantai transpor elektron.
* Karena P700 mentransfer elektronnya ke akseptor elektron, P700 mengalami defisiensi elektron dan tidak dapat melaksanakan fungsinya.
* Selama perpindahan elektron dari akseptor satu ke akseptor lain, selalu terjadi transformasi hidrogen bersama-sama elektron pada fotosistem P 700 itu
* Rantai transpor ini menghasilkan gaya penggerak proton, yang memompa ion H+ melewati membran, yang kemudian menghasilkan gradien konsentrasi yang dapat digunakan untuk menggerakkan sintase ATP selama kemiosmosis, yang kemudian menghasilkan ATP.
* Dari rantai transpor, elektron kembali ke fotosistem I. Dengan kembalinya elektron ke fotosistem I, maka fotosistem I dapat kembali melaksanakan fungsinya lagi
* Fotofosforilasi siklik terjadi pada beberapa bakteri, dan juga terjadi pada semua organisme fotoautotrof.

Fotofosforilasi Nonsiklik
         Reaksi fotofosforilasi nonsiklik adalah reaksi dua tahap yang melibatkan dua fotosistem klorofil yang berbeda, yaitu fotosistem I dan II. Dalam fotofosforilasi nonsiklik, pergerakan elektron dimulai di fotosistem II, tetapi elektron tidak kembali lagi ke fotosistem II.
 
* Mula-mula, molekul air diurai menjadi 2H+ + 1/2O2 + 2e-.
* Dua elektron dari molekul air tersimpan di fotosistem II,
* Sedang ion H+ akan digunakan pada reaksi yang lain
* dan O2 akan dilepaskan ke udara bebas.
* Karena tersinari oleh cahaya matahari, dua elektron yang ada di P680 menjadi tereksitasi dan keluar menuju akseptor elektron primer.
* Setelah terjadi transfer elektron, P680 menjadi defisiensi elektron, tetapi dapat cepat dipulihkan berkat elektron dari hasil penguraian air tadi.
* Setelah itu mereka bergerak lagi ke rantai transpor elektron, yang membawa mereka melewati pheophytin, plastoquinon, komplek sitokrom b6f, plastosianin, dan akhirnya sampai di fotosistem I, tepatnya di P700.
* Perjalanan elektron diatas disebut juga dengan "skema Z".
* Sepanjang perjalanan di rantai transpor, dua elektron tersebut mengeluarkan energi untuk reaksi sintesis kemiosmotik ATP, yang kemudian menghasilkan ATP.
* Sesampainya di fotosistem I, dua elektron tersebut mendapat pasokan tenaga yang cukup besar dari cahaya matahari.
* Kemudian elektron itu bergerak ke molekul akseptor, feredoksin, dan akhirnya sampai di ujung rantai transpor, dimana dua elektron tersebut telah ditunggu oleh NADP+ dan H+, yang berasal dari penguraian air.
* Dengan bantuan suatu enzim bernama Feredoksin-NADP reduktase, disingkat FNR, NADP+, H+, dan elektron tersebut menjalani suatu reaksi:
* NADP+ + H+ + 2e- —> NADPH
* NADPH, sebagai hasil reaksi diatas, akan digunakan dalam reaksi Calvin-Benson, atau reaksi gelap.
          Fotofosforilasi siklik dan fotofosforilasi nonsiklik memiliki perbedaan yang mendasar, yaitu sebagai berikut

FOTOFOSFORILASI SIKLIK                           FOTOFOSFORILASI NONSIKLIK
-Hanya melibatkan fotosistem I                                     -Melibatkan fotosistem I dan II
-Menghasilkan ATP                                                        -Menghasilkan ATP dan NADPH
-Tidak terjadi fotolisis air                                               -Terjadi fotolisis air untuk menutupi 
                                                                       kekurangan elektron pada fotosistem II

Reaksi Gelap
* Reaksi gelap merupakan reaksi lanjutan dari reaksi terang dalam fotosintesis.
* Reaksi ini tidak membutuhkan cahaya. Reaksi gelap terjadi pada bagian kloroplas yang disebut stroma.
* Bahan reaksi gelap adalah ATP dan NADPH, yang dihasilkan dari reaksi terang, dan CO2, yang berasal dari udara bebas.
* Dari reaksi gelap ini, dihasilkan glukosa (C6H12O6), yang sangat diperlukan bagi reaksi katabolisme.
* Reaksi ini ditemukan oleh Melvin Calvin dan Andrew Benson, karena itu reaksi gelap disebut juga reaksi Calvin-Benson.
* Salah satu substansi penting dalam proses ini ialah senyawa gula beratom karbon lima yang terfosforilasi yaitu ribulosa fosfat.
* Jika diberikan gugus fosfat kedua dari ATP maka dihasilkan ribulosa difosfat (RDP). Ribulosa difosfat ini yang nantinya akan mengikat CO2 dalam reaksi gelap.
* Secara umum, reaksi gelap dapat dibagi menjadi tiga tahapan (fase), yaitu fiksasi, reduksi, dan regenerasi.

* Pada fase fiksasi, 6 molekul ribulosa difosfat mengikat 6 molekul CO2 dari udara dan membentuk 6 molekul beratom C6 yang tidak stabil
* 6 molekul beratom C6 yang tidak stabil itu kemudian pecah menjadi 12 molekul beratom C3 yang dikenal dengan 3-asam fosfogliserat (APG/PGA).
* Selanjutnya, 3-asam fosfogliserat ini mendapat tambahan 12 gugus fosfat, dan membentuk 1,3-bifosfogliserat (PGA 1.3 biphosphat).
* Kemudian, 1,3-bifosfogliserat masuk ke dalam fase reduksi, dimana senyawa ini direduksi oleh H+ dari NADPH, yang kemudian berubah menjadi NADP+, dan terbentuklah 12 molekul fosfogliseraldehid (PGAL) yang beratom 3C.
* Selanjutnya terjadi sintesa , 2 molekul fosfogliseraldehid melepaskan diri dan menyatukan diri menjadi 1 molekul glukosa yang beratom 6C (C6H12O6).
* 10 molekul fosfogliseraldehid yang tersisa kemudian masuk ke dalam fase regenerasi, yaitu pembentukan kembali ribulosa difosfat.(RDP/RuBP)
* Pada fase ini, 10 molekul fosfogliseraldehid berubah menjadi 6 molekul ribulosa fosfat. Jika mendapat tambahan gugus fosfat, maka ribulosa fosfat akan berubah menjadi ribulosa difosfat (RDP),
* RDP/RuBP kemudian kembali akan mengikat CO2 lagi , begitu setrusnya.
          Reaksi gelap ini menghasilkan APG (asam fosfogliserat), ALPG (fosfogliseraldehid), RDP (ribulosa difosfat), dan glukosa (C6H12O6).
          Dalam fotosintesis kebutuhan karbon dioksida (CO2) pada reaksi gelap , akan dipenuhi dari udara yang masuk melalui stomata tanaman.
          Pada kebanyakan tanaman, fotosintesis berfluktuasi sepanjang hari sebagai stomata membuka dan menutup. Biasanya, stomata terbuka di pagi hari, menutup pada tengah hari, membuka kembali di sore hari, dan ditutup untuk baik di malam hari. Karbon dioksida yang berlimpah di udara, sehingga tidak menjadi faktor pembatas dalam pertumbuhan tanaman.
          Pada sistem penanaman tanaman dengan Greenhouse tertutup rapat mungkin tidak cukup memungkinkan udara luar untuk masuk dan dengan demikian mungkin kurangnya karbon dioksida yang cukup untuk pertumbuhan tanaman. Karbon dioksida generator digunakan untuk menghasilkan CO2 di rumah kaca untuk tanaman komersial seperti mawar, anyelir, dan tomat. Dalam rumah kaca rumah yang lebih kecil, es kering adalah sumber yang efektif dari CO2.

Faktor Penentu Laju Fotosintesis
         Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis :
  1. Intensitas cahaya
        Laju fotosintesis maksimum ketika banyak cahaya.
  2. Konsentrasi karbon dioksida
        Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt
digunakan tumbuhan untuk melangsungkan fotosintesis.
  3. Suhu
       Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja
pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan
meningkatnya suhu hingga batas toleransi enzim.
  4. Kadar air
      Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat
penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
  5. Kadar fotosintat (hasil fotosintesis)
      Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan
naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju
fotosintesis akan berkurang.
  6. Tahap pertumbuhan
     Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada
tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini
mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi
dan makanan untuk tumbuh.
          Dengan terbentuknya Glukosa sebagai hasil akhir Fotosintesis nya , akan dirubah menjadi Amylum dan kemudian dimanfaatkan menjadi berbagai bentuk karbohidrat . Supaya tidak setengah setengah memahaminya Karbohidrat ini di kelompokkan menjadi berbagai bentuk yaitu berdasarkan gugus gulanya. dan tentu secara pasti apapun bentuknya karbohidrat itu mutlak berasal dari Hasil fotosintesis Tumbuhan
Berdasar panjang rantai karbon, karbohidrat dibagi 3, yaitu :
      1. Monosakarida Merupakan karbohidrat yang tidak bisa dihidrolisis menjadi bentuk yang lebih sederhana dibagi menjadi triosa, tetrosa, pentosa, heksosa, heptosa. Heksosa dalam tubuh antara lain glukosa, galaktosa, fruktosa dan manosa.
      2. Oligosakarida Menghasilkan 2 - 6 monosakarida melalui hidrolisis. Oligosakarida yang penting dalam tubuh adalah disakarida yang menghasilkan 2 monosakarida jika dihidrolisis, contoh disakarida antara lain: sukrosa (gula pasir), laktosa (gula susu), dan maltosa (gula gandum). Hidrolisis sukrosa menghasilkan glukosa dan fruktosa. Hidrolisis laktosa menghasilkan galaktosa dan glukosa. Hidrolisis maltosa menghasilkan dua molekul glukosa.
      3. PolisakaridaMenghasilkan lebih dari 6 monosakarida melalui hidrolisis. Contoh: pati, glikogen, selulosa, dekstrin.

RESPIRASI SEL

     Didalam setiap sel hidup terjadi proses metabolisme. Salah satu proses tersbut adalah katabolisme. Katabolisme disebut pula disimilasi, karena dalam proses ini energy yang tersimpan ditimbulkan kembali atau dibongkar untuk menyelenggarakan proses – proses kehidupan .
     Respirasi sel berlangsung didalam mitokondria melalui proses glikolisis, yakni proses pengubahan atom C6 menjadi C3. Dilanjutkan dengan proses dekarboksilasi oksidatif yang mengubah senyawa C3 menjadi senyawa C2 dan C1 (CO2). Kemudian daur krebs mengubah senyawa C2 menjadi senyawa C1(CO2¬).
Pada setiap tingkatan ini dihasilkan energi berupa ATP (Adenosine Tri Fosfat) dan Hidrogen . hidrogen yang berenergi bergabung dengan akseptor hidrogen untuk dibawa ke transfer elektron ; energinya dilepaskan dan hidrogen diterima oleh O2 menjadi H2O .
     Didalam proses respirasi dihasilkan senyawa antara CO2 yang merupakan bahan dasarproses anabolisme.
Didalam proses respirasi sel bahan bakarnya adalah gula heksosa. Pembakaran tersebut memerlukan oksigen bebas, sehingga reaksi keseluruhan dapat ditukis sebagai berikut :
C6h12O6 + 6 CO2   ----------------  6 CO2 + 6H2O + 675 kal
     Dalam respirasi aerob. Gula heksosa mengalami pembongkaran dengan proses yang sangat panjang. Pertamakali glukosa sebagai bahan dasar mengalami fosfolarisasi, yaitu proses penambahan fosfat kepada molekul – molekul glukosa hingga menjadi fruktosa -1, 6 – difosfat. Pada fosforilasi , ATP dan ADP memegang peranan penting sebagai pengisi fosfat.
Adapun pengubahan fruktosa – 1 , 6 – dipospat hingga akhirnya menjadi CO2 dan H2O dapat dibagi menjadi empat tahap , yaitu glikolisis, reaksi antara (dekarboksilasi oksidatif), siklus krebs, dan transfer electron.
1. Glikolisis
     Adalah rangkaian reaksi pengubahan molekul glukosa menjadi asam piruvat dengan menghasilkan NADH dan ATP.
Sifat – sifat glikolisis ialah:
   a. Dapat berlangsung secara aerob maupun anaerob
   b. Dalam glikolisis terdapat kegiatan enzimatis dan AdenosineTrifosfat (ATP) serta Adenosine Difosfat (ADP)
   c. ADP dan ATP berperan dalam pemindahan fosfat dari molekul satu ke molekul lainnya
.

Gambar SKEMA PROSES GLIKOLISIS'.   
gambar:skemaglikolissis1.jpg
Glukosa sebagai substrat dalam respirasi aerob (maupun anaerob) diperoleh dari hasil fotosintesis.diawali dengan penambahan satu fosfat oleh ATPO terhadap glukosa, sehingga terbentuk glukosa – 6 fosfat dan ATP menyusut menjadi ADP . peristiwa ini disebut fosfolirasi yang berlangsung dengan bantuan enzim heksokinase dan ion Mg++ hasil akhir dari fosfolirasi berupa fruktosa-1, 6-difosfat dan dari sinilah dimulai glikolisis.
     Glikolisis dimulai dari perubahan fruktosa -1, 6-difosfat yang memiliki 6 buah atom C diubah menjadi 3-difosfogliseral-dehida (dengan 3 buah atom C) dan dihidroksi-aseton-fosfat. Pembongkaran ini dibantu oleh enzim aldolase.
Dihidroksi aseton fosfat kemudian menjadi 3- fosfogliseraldehida juga dengan pertolongan enzim fosfitriosaisomerase.
Selanjutnya fosfogliseraldehida bersebyawa dengan suatu asam fosfat (H3PO4) dan berubah menjadi 1,3 –disfosfogliseraldehida.
1,3 – difosfogliseraldehida berubah menjadi asam 1,3 –difosfogliserat dengan bantuan enzimdehidrogenase. Peristiwa ini terjadi karena adanya penambahan H2.
       Dengan bantuan enzim transfosforilase fosfogliserat serta ion – ion Mg++, asam 1,3-difosfogliserat kehilangan satu fosfat sehingga berubah menjadi asam – 3 – fosfogliserat.
Selanjutnya asam – 3 – fosfogliserat menjadi asam – 2 – fosfogliserat karena pengaruh enzim fosfogliseromutase.
Dengan pertolongan enzim enolase dan ion – ion Mg++, maka asam- 2-fosfofogliserat melepaskan H2O dan menjadi asam -2-fosfoenolpiruvat.
     Perubahan terakhir dalam glikolisisadalah pelepasan satu fosfat dari asam-2-fosfoenolpiruvat menjadi asam piruvat. Enzim transfosforilase fosfopiruvat dan ion – ion Mg++ membantu proses ini sedang ADP meningkat menjadi ATP.

2. Reaksi Antara
     Setelah glikolisis terjadi reaksi antara. (dekarboksilasi oksidatif), yaitu pengubahan asam piruvat menjadi 2 asetil KoA sambil menghasilkan CO2 dan 2NADH2 yang reaksinya adalah :

2 NAD 2NADH2
2(C3H4O3) 2 (C3H3O) – KoA + 2CO2
Piruvat Asetil KoA

        Perubahan asam piruvat menjadi asetil KoA merupakan persimpangan jalan untuk menuju berbagai biosintesis yang lain. Asetil KoA yang terbentuk kemudian memasuki siklus krebs.

3. Siklus Krebs ( Siklus Asam Sitrat)
        Pada siklus krebs ini (terjadi dimatriks mitokondria) asetil KoA diubah menjadi KoA. Asetil KoA bergabung dengan asam oksaloasetat membentuk asam sitrat. KoA dilepaskan sehingga memungkinkan untuk mengambil fragmen 2C lain dari asam piruvat.
                                                                 SIKLUS KREBS
   
gambar:siklus krebs2.jpg
gambar:siklus krebs2.jpg
    Pembentukan asam sitrat terjadi diawal siklus krebs , sementara itu sisa dua karbon dari glukosa dilepaskan sebagai CO2.
Selama terjadi pembentukan – pembentukan , energi yang dibutuhkan dilepaskan untuk menggabungkan fosfat denga ADP membentuk molekul ATP.
    Pada siklus krebs , pemecahan rantai karbon pada glukosa selesai. Jadi, sebagai hasil dari glikolisis , reaksi antara dan siklus krebs adalah pemecahan satu molekul glukosa 6 karbon menjadi 6 molekul 1 karbon, selain itu juga dihasilkan 2 molekul ATP dari glikolisis dan 2 ATP lagi dari siklus krebs.
Perlu diingat bahwa tiap – tiap proses melepaskan atom hidrogen yang ditranspor ke sistem transpor elektron oleh molekul pembawa .
                                                        
4. Sistem transpor elektron
    Pada sistem transpor electron berlangsung pengepakan energi dari glukosa menjadi ATP.
    Reaksi ini terjadi didalam membaran dalam mitokondria, hidrogen dari siklus krebs yang tergabung dalam FADH2 dan NADH diubah menjadi elektron dan proton.
    Pada sistem transport elektron ini, oksigen adalah akseptor elektron yang terakhir , setelah menerima electron , O2 akan bereaksi dengan H+ membentuk H2O. pada sistem ini dihasilkan 34 ATP.
    Jadi total ATP yang dihasilkan dari respirasi seluler adalah sebagai berikut:
                Secara tidak langsung secara  Lewat sistem transport elektron
Glikolisis        2 NADH2 = 6  ATP            2 ATP
Reaksi antara     2 NADH2 = 6  ATP
Siklus Krebs      6 NADH2 = 18 ATP            2 ATP
                  2 FADH2 = 4  ATP   
------------------------------------------------------------------                                               
                            34 ATP            4 ATP
5. Respirasi Aerob dan Anaerob
    Respirasi aerob adalah suatu proses pernapasan yang membutuhkan iksigen dari udara.
Ada beberapa tumbuhan yang kegiatan respirasinya menurun bila konsentrasi oksigen di udara dibawah normal, misalnya bayam, wortel dan bebrapa tumbuhan lainnya.
    Respirasi anaerob dapat pula disebut fermentasi atau respirasi intramolekul. Tujuan fermentasi sama dengan respirasi aerob, yaitu mendapatkan energy. Hanya saja energi yang dihasilkan jauh lebih sedikit dari respirasi aerob.
Perhatikan reaksi dibawah ini!
Respirasi aerob :
 C6H12O6 ---- 6 CO2 + 6 H2O + 675 kal + 38 ATP
Respiasi anaerob:
 C6H12O6 ------  2 C2H5OH + 2CO2 + 21 kal + 2 ATP
Pernapasan anaerob dapat berlangsung didalam udara bebas, tetapi proses ini tidak menggunakan O2 yang disediakan di udara. Fermentasi sering pula disebut sebagai peragian alcohol atau alkoholisasi.
Pada respirasi aerob maupun anaerob, asam piruvat hasil proses glikolisis merupakan substrat.
    Perhatikan skema dibawah ini !
                                          gambar:asam piruvat1.jpg
Respirasi aerob dan respirasi anaerob

a) Asam piruvat dalam respirasi anaerob
   gambar:aerob1.jpg
b) Asam piruvat dalam respirasi aerob
    Pembongkaran sempurna terjadi pada oksidasi asam piruvat dalam respirasu aerob. Dari proses ini dihasilkan CO2 dan H2O serta energi yang lebih banyak , yaitu 38 ATP